Abstract
We have upgraded our Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun drug repurposing to include ligand-based, data fusion, and decision tree pipelines. The first version of CANDO implemented a structure-based pipeline that modeled interactions between compounds and proteins on a large scale, generating compoundproteome interaction signatures used to infer similarity of drug behavior; the new pipelines accomplish this by incorporating molecular fingerprints and the Tanimoto coefficient. We obtain improved benchmarking performance with the new pipelines across all three evaluation metrics used: average indication accuracy, pairwise accuracy, and coverage. The best performing pipeline achieves an average indication accuracy of 19.0% at the top10 cutoff, compared to 11.7% for v1, and 2.2% for a random control. Our results demonstrate that the CANDO drug recovery accuracy is substantially improved by integrating multiple pipelines, thereby enhancing our ability to generate putative therapeutic repurposing candidates, and increasing drug discovery efficiency.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献