Abstract
AbstractDuring meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we elucidate how this elaborate three-dimensional chromosome organisation is underpinned by genomic sequence in Saccharomyces cerevisiae. Entering meiosis, strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion limited by barriers, yet are patterned by convergent transcription rather than binding of the mammalian interphase factor, CTCF, which is absent in S. cerevisiae—thereby both challenging and extending current paradigms of local chromosome organisation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process.
Publisher
Cold Spring Harbor Laboratory
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献