Abstract
AbstractSome of drug-resistant mutants of HIV-1 protease (PR), such as a clinically-relevant drug- resistant PR mutant (Flap+(I54V)) containing L10I, G48V, I54V and V82A mutations, produce significant changes in the balance between entropy and enthalpy of the drug-PR interactions, compared to the wild-type (WT) PR. Here, to gain a comprehensive understanding of the entropy-enthalpy compensation effects, we compared nuclear magnetic resonance (NMR), fluorescence spectroscopy and isothermal titration calorimetry (ITC) data of a WT PR with Flap+(I54V)and related mutants: (1) Flap+(I54V); (2) Flap+(I54A)which evolves from Flap+(I54V)in the continued presence of inhibitor yet does not exhibit entropy-enthalpy compensation; and (3) Flap+(I54), a control mutant that contains only L10I, G48V and V82A mutations. Our data indicate that WT and Flap+(I54A)show enthalpy-driven inhibitor-interaction, while Flap+(I54)and Flap+(I54V)exhibit entropy-driven inhibitor interaction. Interestingly, Flap+(I54A)exhibited significantly slower heat flow in the competitive ITC experiment with a strong binder, darunavir, and a weak binder, acetyl-pepstatin, but did not exhibit such slow heat flow in the direct inhibitor-titration experiments. NMR confirmed replacement of the weak binder by the strong binder in a competitive manner. This difference in the heat flow of the competitive binding experiment compared to the direct experiment can only be explained by assuming an inhibitor-bound intermediate pathway. A similar, but attenuated, tendency for slow heat flow was also detected in the competitive experiment with WT. Overall, our data suggests that an inhibitor-bound intermediate affects the entropy-enthalpy compensation of inhibitor-PR interaction.
Publisher
Cold Spring Harbor Laboratory