An inhibitor-interaction intermediate of HIV-1 protease, revealed by Isothermal Titration Calorimetry and NMR spectroscopy

Author:

Khan Shahid N,Persons John DORCID,Guerrero Michel,Ilina Tatiana V.,Oda MasayukiORCID,Ishima RiekoORCID

Abstract

AbstractSome of drug-resistant mutants of HIV-1 protease (PR), such as a clinically-relevant drug- resistant PR mutant (Flap+(I54V)) containing L10I, G48V, I54V and V82A mutations, produce significant changes in the balance between entropy and enthalpy of the drug-PR interactions, compared to the wild-type (WT) PR. Here, to gain a comprehensive understanding of the entropy-enthalpy compensation effects, we compared nuclear magnetic resonance (NMR), fluorescence spectroscopy and isothermal titration calorimetry (ITC) data of a WT PR with Flap+(I54V)and related mutants: (1) Flap+(I54V); (2) Flap+(I54A)which evolves from Flap+(I54V)in the continued presence of inhibitor yet does not exhibit entropy-enthalpy compensation; and (3) Flap+(I54), a control mutant that contains only L10I, G48V and V82A mutations. Our data indicate that WT and Flap+(I54A)show enthalpy-driven inhibitor-interaction, while Flap+(I54)and Flap+(I54V)exhibit entropy-driven inhibitor interaction. Interestingly, Flap+(I54A)exhibited significantly slower heat flow in the competitive ITC experiment with a strong binder, darunavir, and a weak binder, acetyl-pepstatin, but did not exhibit such slow heat flow in the direct inhibitor-titration experiments. NMR confirmed replacement of the weak binder by the strong binder in a competitive manner. This difference in the heat flow of the competitive binding experiment compared to the direct experiment can only be explained by assuming an inhibitor-bound intermediate pathway. A similar, but attenuated, tendency for slow heat flow was also detected in the competitive experiment with WT. Overall, our data suggests that an inhibitor-bound intermediate affects the entropy-enthalpy compensation of inhibitor-PR interaction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3