Stress Resistance Screen in a Human Primary Cell Line Identifies Small Molecules that Affect Aging Pathways and ExtendC. elegans’Lifespan

Author:

Zhang PeichuanORCID,Zhai Yuying,Cregg James,Ang Kenny Kean-Hooi,Arkin Michelle,Kenyon Cynthia

Abstract

AbstractIncreased resistance to environmental stress at the cellular level is correlated with the longevity of long-lived mutants and wild-animal species. Moreover, in experimental organisms, screens for increased stress resistance have yielded mutants that are long-lived. To find entry points for small molecules that might extend healthy longevity in humans, we screened ∼100,000 small molecules in a human primary-fibroblast cell line and identified a set that increased oxidative-stress resistance. Some of the hits fell into structurally-related chemical groups, suggesting that they may act on common targets. Two small molecules increasedC. elegans’stress resistance, and at least 9 extended their lifespan by ∼10-50%. Thus, screening for increased stress resistance in human cells can enrich for compounds with promising pro-longevity effects. Further characterization of these compounds, including a chalcone that promoted stress resistance independently ofNRF2, may elucidate new ways to extend healthy human lifespan.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3