The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9

Author:

Schwartz Hillel T.,Horvitz H. Robert

Abstract

The developmental control of apoptosis is fundamental and important. We report that the Caenorhabditis elegans Bar homeodomain transcription factor CEH-30 is required for the sexually dimorphic survival of the male-specific CEM (cephalic male) sensory neurons; the homologous cells of hermaphrodites undergo programmed cell death. We propose that the cell-type-specific anti-apoptotic gene ceh-30 is transcriptionally repressed by the TRA-1 transcription factor, the terminal regulator of sexual identity in C. elegans, to cause hermaphrodite-specific CEM death. The established mechanism for the regulation of specific programmed cell deaths in C. elegans is the transcriptional control of the BH3-only gene egl-1, which inhibits the Bcl-2 homolog ced-9; similarly, most regulation of vertebrate apoptosis involves the Bcl-2 superfamily. In contrast, ceh-30 acts within the CEM neurons to promote their survival independently of both egl-1 and ced-9. Mammalian ceh-30 homologs can substitute for ceh-30 in C. elegans. Mice lacking the ceh-30 homolog Barhl1 show a progressive loss of sensory neurons and increased sensory-neuron cell death. Based on these observations, we suggest that the function of Bar homeodomain proteins as cell-type-specific inhibitors of apoptosis is evolutionarily conserved.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3