Fine-scale ecological and transcriptomic data reveal niche differentiation of an allopolyploid from diploid parents in Cardamine

Author:

Akiyama Reiko,Sun Jianqiang,Hatakeyama Masaomi,Lischer Heidi E.L.,Briskine Roman V.,Hay Angela,Gan Xiangchao,Tsiantis Miltos,Kudoh Hiroshi,Kanaoka Masahiro M.,Sese Jun,Shimizu Kentaro K.,Shimizu-Inatsugi Rie

Abstract

AbstractPolyploidization, or whole genome duplication, is one of the major mechanisms of plant speciation. Allopolyploids (species that harbor polyploid genomes originating from hybridization of different diploid species) have been hypothesized to occupy a niche with intermediate, broader, or fluctuating environmental conditions compared with parental diploids. It remains unclear whether empirical data support this hypothesis and whether specialization of expression patterns of the homeologs (paralogous gene copies resulting from allopolyploidization) relates to habitat environments. Here, we studied the ecology and transcriptomics of a wild allopolyploid Cardamine flexuosa and its diploid parents C. hirsuta and C. amara at a fine geographical scale in their native area in Switzerland. We found that the diploid parents favored opposite extremes in terms of soil moisture, soil carbon-to-nitrogen ratios, and light availability. The habitat of the allopolyploid C. flexuosa was broader compared with those of its parental species and overlapped with those of the parents, but not at its extremes. In C. flexuosa, the genes related to water availability were overrepresented among those at both the expression level and the expression ratio of homeolog pairs, which varied among habitat environments. These findings provide empirical evidence for niche differentiation between an allopolyploid and its diploid parents at a fine scale, where both ecological and transcriptomic data indicated water availability to be the key environmental factor for niche differentiation.Significance statementPolyploidization, or whole genome duplication, is common in plants and may contribute to their ecological diversification. However, little is known about the niche differentiation of wild allopolyploids relative to their diploid parents and the gene expression patterns that may underlie such ecological divergence. We detected niche differentiation between the allopolyploid Cardamine flexuosa and its diploid parents C. amara and C. hirsuta along water availability gradient at a fine scale. The ecological differentiation was mirrored by the dynamic control of water availability-related gene expression patterns according to habitat environments. Thus, both ecological and transcriptomic data revealed niche differentiation between an allopolyploid species and its diploid parents.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3