Abstract
Biochemical networks in single cells can display large fluctuations in molecule numbers, making mesoscopic approaches necessary for correct system descriptions. We present a general method that allows rapid characterization of the stochastic properties of intracellular networks. The starting point is a macroscopic description that identifies the system's elementary reactions in terms of rate laws and stoichiometries. From this formulation follows directly the stationary solution of the linear noise approximation (LNA) of the Master equation for all the components in the network. The method complements bifurcation studies of the system's parameter dependence by providing estimates of sizes, correlations, and time scales of stochastic fluctuations. We describe how the LNA can give precise system descriptions also near macroscopic instabilities by suitable variable changes and elimination of fast variables.
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics(clinical),Genetics
Cited by
344 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献