High-Throughput Computational and Experimental Techniques in Structural Genomics

Author:

Chance Mark R.,Fiser Andras,Sali Andrej,Pieper Ursula,Eswar Narayanan,Xu Guiping,Fajardo J. Eduardo,Radhakannan Thirumuruhan,Marinkovic Nebojsa

Abstract

Structural genomics has as its goal the provision of structural information for all possible ORF sequences through a combination of experimental and computational approaches. The access to genome sequences and cloning resources from an ever-widening array of organisms is driving high-throughput structural studies by the New York Structural Genomics Research Consortium. In this report, we outline the progress of the Consortium in establishing its pipeline for structural genomics, and some of the experimental and bioinformatics efforts leading to structural annotation of proteins. The Consortium has established a pipeline for structural biology studies, automated modeling of ORF sequences using solved (template) structures, and a novel high-throughput approach (metallomics) to examining the metal binding to purified protein targets. The Consortium has so far produced 493 purified proteins from >1077 expression vectors. A total of 95 have resulted in crystal structures, and 81 are deposited in the Protein Data Bank (PDB). Comparative modeling of these structures has generated >40,000 structural models. We also initiated a high-throughput metal analysis of the purified proteins; this has determined that 10%-15% of the targets contain a stoichiometric structural or catalytic transition metal atom. The progress of the structural genomics centers in the U.S. and around the world suggests that the goal of providing useful structural information on most all ORF domains will be realized. This projected resource will provide structural biology information important to understanding the function of most proteins of the cell.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3