Author:
Dosenovic Pia,Kara Ervin E.,Pettersson Anna-Klara,McGuire Andrew,Gray Matthew,Hartweger Harald,Thientosapol Eddy S.,Stamatatos Leonidas,Nussenzweig Michel C.
Abstract
AbstractThe discovery that humans can produce potent broadly neutralizing antibodies (bNAbs) to several different epitopes on the HIV-1 spike has reinvigorated efforts to develop an antibody based HIV-1 vaccine. Antibody cloning from single cells revealed that nearly all bNAbs show unusual features that could help explain why it has not been possible to elicit them by traditional vaccination, and instead that it would require a sequence of different immunogens. This idea is supported by experiments with genetically modified immunoglobulin knock-in mice. Sequential immunization with a series of specifically designed immunogens was required to shepherd the development of bNAbs. However, knock-in mice contain super-physiologic numbers of bNAb precursor expressing B cells and therefore how these results can be translated to a more physiologic setting remains to be determined. Here we make use of adoptive transfer experiments using knock-in B cells that carry a synthetic intermediate in the pathway to anti-HIV-1 bNAb development to examine how the relationship between B cell receptor affinity and precursor frequency affects germinal center B cell recrutiment and clonal expansion. Immunization with soluble HIV-1 antigens can recruit bNAb precursor B cells to the germinal center when there are as few as 10 such cells per mouse. However, at low precursor frequencies the extent of clonal expansion is directly proportional to the affinity of the antigen for the B cell receptor, and recruitment to germinal centers is variable and dependent on re-circulation.Significance statementAn essential requirement for an HIV-vaccine is to elicit antibodies to conserved regions of the spike protein (Env) becasue these antibodies can protect against infection. Although broadly neutralizing antibodies develop naturally in rare individuals after prolongued HIV infection, eliciting them by vaccination has only been possible in artificial knock-in mouse models wherein the number of B cells expressing the antibody precursor is super-physiologic. To understand the relationship between precursor frequency, antigen affinity and germinal center recruitment we have performed adoptive transfer experiments in which fixed numbers of precursor cells are engrafted in wild type mice. Our results provide a framework for understanding how precursor frequency and antigen affinity shape humoral immunity to HIV.
Publisher
Cold Spring Harbor Laboratory