Perturbed functional networks in Alzheimer’s Disease reveal opposing roles for TGIF and EGR3

Author:

Canchi Saranya,Raao Balaji,Masliah Deborah,Rosenthal Sara Brin,Sasik Roman,Fisch Kathleen M.,Jager Philip De,Bennett David A.,Rissman Robert A.

Abstract

AbstractWhile Alzheimer’s disease (AD) is the most prevalent cause of dementia, complex combinations of the underlying pathologies have led to evolved concepts in clinical and neuropathological criteria in the past decade. Pathological AD can be decomposed into subsets of individuals with significantly different antemortem cognitive decline rates. Using transcriptome as a proxy for functional state, we preselected 414 expression profiles of clinically and neuropathologically confirmed AD subjects and age matched non-demented controls sampled from a large community based neuropathological study. By combining brain tissue specific protein interactome with gene network, we identify functionally distinct composite clusters of genes which reveal extensive changes in expression levels in AD. The average global expression for clusters corresponding to synaptic transmission, metabolism, cell cycle, survival and immune response were downregulated while the upregulated cluster had a large set of uncharacterized pathways and processes that may constitute an AD specific phenotypic signature. We identified four master regulators across all clusters of differentially expressed genes by enrichment analysis includingTGIF1andEGR3.These transcription factors have previously not been associated with AD and were validated in brain tissue samples from an independent AD cohort. We identifyTGIF1,a transcriptional repressor as being neuroprotective in AD by activating co-repressors regulating genes critical for DNA repair, maintaining homeostasis and arresting cell cycle. In addition, we show that loss ofEGR3regulation, mediates synaptic deficits by targeting the synaptic vesicle cycle. Collectively, our results highlight the utility of integrating protein interactions with gene perturbations to generate a comprehensive framework for characterizing the alterations in molecular network as applied to AD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3