Assembly of alternative multiprotein complexes directs rRNA promoter selectivity.

Author:

Bell S P,Jantzen H M,Tjian R

Abstract

How can trans-activators with the same DNA binding specificity direct different transcriptional programs? The rRNA transcriptional apparatus offers a useful model system to address this question and to dissect the mechanisms that generate alternative transcription complexes. Here, we compare the mouse and human transcription factors that govern species-specific RNA polymerase I promoter recognition. We find that both human and mouse rRNA transcription is mediated by a specific multiprotein complex. One component of this complex is the DNA-binding transcription factor, UBF. Paradoxically, human and mouse UBF display identical DNA binding specificities even though transcription of rRNA is species specific. Promoter selectivity is conferred by a second essential factor, SL1, which, for humans, does not bind DNA independently but, instead, cooperates with UBF in the formation of high-affinity DNA-binding complexes. In contrast, mouse SL1 can selectively interact with DNA in the absence of UBF. Reconstituted transcription experiments establish that UBF and RNA polymerase I from the two species are functionally interchangeable, whereas mouse and human SL1 exhibit distinct DNA binding and transcription activities. Together, these results suggest a critical role for a specific multiprotein assembly in RNA polymerase I promoter recognition and reveal distinct mechanisms through which such complexes can generate functional diversity.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3