Effects of Altered Excitation-Inhibition Balance on Decision Making in a Cortical Circuit Model

Author:

Lam Norman H.,Borduqui Thiago,Hallak Jaime,Roque Antonio C.,Anticevic Alan,Krystal John H.,Wang Xiao-Jing,Murray John D.ORCID

Abstract

AbstractBackgroundDisruption of the synaptic balance between excitation and inhibition (E/I balance) in cortical circuits is a leading hypothesis for pathophysiologies of neuropsychiatric disorders, such as schizophrenia. However, it is poorly understood how synaptic E/I disruptions propagate upward to induce cognitive deficits, including impaired decision making (DM).MethodsWe investigated how E/I perturbations may impair temporal integration of evidence during perceptual DM in a biophysically-based model of association cortical microcircuits. Using multiple psychophysical task paradigms, we characterized effects of NMDA receptor hypofunction at two key synaptic sites: inhibitory interneurons (elevating E/I ratio, via disinhibition), versus excitatory pyramidal neurons (lowering E/I ratio).ResultsDisruption of E/I balance in either direction can similarly impair DM as assessed by psychometric performance, following inverted-U dependence. Nonetheless, these regimes make dissociable predictions for task paradigms that characterize the time course of evidence accumulation. Under elevated E/I ratio, DM is impulsive: evidence early in time is weighted much more than late evidence. In contrast, under lowered E/I ratio, DM is indecisive: evidence integration and winner-take-all competition between options are weakened. These effects are well captured by an extended drift-diffusion model with self-coupling.ConclusionsOur findings characterize critical roles of cortical E/I balance in cognitive functions, the utility of timing-sensitive psychophysical paradigms, and relationships between circuit and psychological models. The model makes specific predictions for behavior and neural activity that are testable in humans or animals under causal manipulations of E/I balance and in disease states.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3