Understory light quality affects leaf pigments and leaf phenology in different plant functional types

Author:

Brelsford CCORCID,Trasser M,Paris T,Hartikainen SM,Robson TM

Abstract

AbstractUnderstory plant species take on different functional strategies, whereby some exploit periods of available light in springtime before the canopy closes, and others also benefit from sunlight later in autumn when the canopy opens again. These strategies involve understory species coordinating phenological events to pre-empt canopy leaf out and to extend their growing season beyond canopy leaf senescence, meanwhile accumulating photo-protective pigments which mitigate periods of high-light exposure. Canopy closure brings shade to the understory, but also causes drastic changes in light quality. Whilst many experiments manipulating spectral quality have revealed understory plant responses to the changing R:FR ratio in shade, effect of the blue and UV regions have been examined very little. We installed filters attenuating short wavelength regions of the solar spectrum in a forest understory in southern Finland, creating the following treatments: a transparent control filter, and filters attenuating UV radiation < 350 nm, all UV radiation, and both UV and blue light. In eight understory species, representing different plant functional types, we repeatedly assessed leaf optical properties to obtain epidermal flavonol and anthocyanin contents from leaf emergence in spring to leaf senescence in autumn, during both 2017 and 2018. Flavonols responded more to seasonal changes in light quality in relatively light-demanding species than in shade-tolerant and wintergreen species; and were particularly responsive to blue light. However, anthocyanins were largely unaffected by our filter treatments, suggesting that other cues such as cold temperatures govern their seasonal variation. UV radiation only accelerated leaf senescence in Acer platanoides seedlings, but blue light accelerated leaf senescence in all species measured apart from Quercus robur. In summary, seasonal changes in understory solar radiation in the blue and UV regions affected leaf pigments and leaf phenology; particularly for more light-demanding species. An increase in canopy duration under climate change will extend the period of shade in the understory, with consequences for the spectral cues available to understory plants. The resultant reduction in blue and UV radiation in shade, could delay leaf senescence in the understory even further.

Publisher

Cold Spring Harbor Laboratory

Reference74 articles.

1. Multiple functional roles of flavonoids in photoprotection

2. Flavonoids as antioxidants in plants: Location and functional significance

3. Aphalo, P. J. , Albert, A. , McLeod, A. , Heikkilä, A. , Gómez, I. , Figueroa, F. L. , … & Strid, A. (2012). Manipulating UV radiation. Beyond the Visible: A Handbook of Best Practice in Plant UV Photobiology, 206

4. Unravelling the evolution of autumn colours: an interdisciplinary approach;Trends in ecology & evolution,2009

5. Light gains and physiological capacity of understorey woody plants during phenological avoidance of canopy shade

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3