Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1

Author:

Beckert ertrand,Turk Martin,Czech Andreas,Berninghausen Otto,Beckmann Roland,Ignatova Zoya,Plitzko Jürgen M.,Wilson Daniel N.

Abstract

To survive under conditions of stress, such as nutrient deprivation, bacterial 70S ribosomes dimerize to form hibernating 100S particles1. In γ-proteobacteria, such as Escherichia coli, 100S formation requires the ribosome modulation factor (RMF) and the hibernation promoting factor (HPF)2-4. Although structures of E. coli 100S particles have been reported5,6, the low resolution (18-38 Å) prevented the mechanism of ribosome inactivation and dimerization to be fully elucidated. Here we present single particle cryo-electron microscopy structures of hibernating 70S and 100S particles isolated from stationary phase E. coli cells at 3.0-7.9 Å resolution, respectively. Preferred orientation bias for the complete 100S particle was overcome using tilting during data collection. The structures reveal the binding sites for HPF and RMF as well as the unexpected presence of deacylated E-site tRNA and ribosomal protein S1 in the 100S particle. HPF interacts with the anticodon-stem-loop of the E-tRNA and occludes the binding site for the mRNA as well as A- and P-site tRNAs. RMF stabilizes a compact conformation of S1, which together sequester the anti-Shine-Dalgarno (SD) sequence of the 16S ribosomal RNA (rRNA), thereby inhibiting translation initiation. At the dimerization interface, S1 and S2 form intersubunit bridges with S3 and S4 and the C-terminus of S2 probes the mRNA entrance channel of the symmetry related particle, thus suggesting that only translationally inactive ribosomes are prone to dimerization. The back-to-back 100S dimerization mediated by HPF and RMF is distinct from that observed previously in Gram-positive bacteria7-10 and reveals a unique function for S1 in ribosome dimerization and inactivation, rather than its canonical role in facilitating translation initiation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3