Evolutionary dynamics ofde novomutations and mutant lineages arising in a simple, constant environment

Author:

Kinnersley Margie,Schwartz KatjaORCID,Boswell Jacob,Yang Dong-DongORCID,Sherlock GavinORCID,Rosenzweig FrankORCID

Abstract

AbstractA large, asexual population founded by a single clone evolves into a population teeming with many, whether or not its environment is structured, and whether or not resource levels are constant or fluctuating. The maintenance of genetic complexity in such populations has been attributed to balancing selection, or to either clonal interference or clonal reinforcement, arising from antagonistic or synergistic interactions, respectively. To distinguish among these possibilities, to identify targets of selection and establish when and how often they are hit, as well as to gain insight into howde novomutations interact, we carried out 300-500 generation glucose-limited chemostat experiments founded by anE. colimutator. To discover allde novomutations reaching ≥1% frequency, we performed whole-genome, whole-population sequencing at ∼1000X-coverage every 50 generations. To establish linkage relationships among these mutations and depict the dynamics of evolving lineages we sequenced the genomes of 96 clones from each population when allelic diversity was greatest. Operon-specific mutations that enhance glucose uptake arose to high frequency first, followed by global regulatory mutations. Late-arising mutations were related to energy conservation as well as to mitigating pleiotropic effects wrought by earlier regulatory changes. We discovered extensive polymorphism at relatively few loci, with identical mutations arising independently in different lineages, both between and within replicate populations. Out of more than 3,000 SNPs detected in nearly 1,800 genes or intergenic regions, only 17 reached a frequency ≥ 98%, indicating that the evolutionary dynamics of adaptive lineages was dominated by clonal interference. Finally, our data show that even when mutational input is increased by an ancestral defect in DNA repair, the spectrum of beneficial mutations that reach high frequency in a simple, constant resource-limited environment is narrow, resulting in extreme parallelism where many adaptive mutations arise but few ever go to fixation.Author SummaryMicrobial evolution experiments open a window on the tempo and dynamics of evolutionary change in asexual populations. High-throughput sequencing can be used to catalogde novomutations, determine in which lineages they arise, and assess allelic interactions by tracking the fate of those lineages. Thisadaptive geneticsapproach makes it possible to discover whether clonal interactions are antagonistic or synergistic, and complements genetic screens of induced deleterious/loss-of-function mutants. We carried out glucose-limited chemostat experiments founded by anE. colimutator and performed whole-genome, whole-population sequencing on 300-500 generation evolutions, cataloging 3,346de novomutations that reached ≥1% frequency. Mutations enhancing glucose uptake rose to high frequency first, followed by global regulatory changes that modulate growth rate and limiting resource assimilation, then by mutations that favor energy conservation or mitigate pleiotropic effects of earlier regulatory changes. We discovered that a few loci were highly polymorphic, with identical mutations arising independently in different lineages, both between and within replicate populations. Thus, when mutational input is increased by an ancestral defect in DNA repair, the spectrum of beneficial mutations that arises under constant resource-limitation is narrow, resulting in extreme parallelism where many adaptive mutations arise but few ever become fixed.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3