Experimenting with reproducibility in bioinformatics

Author:

Kim Yang-MinORCID,Poline Jean-BaptisteORCID,Dumas GuillaumeORCID

Abstract

AbstractReproducibility has been shown to be limited in many scientific fields. This question is a fundamental tenet of the scientific activity, but the related issues of reusability of scientific data are poorly documented. Here, we present a case study of our attempt to reproduce a promising bioinformatics method [1] and illustrate the challenges to use a published method for which code and data were available. First, we tried to re-run the analysis with the code and data provided by the authors. Second, we reimplemented the method in Python to avoid dependency on a MATLAB licence and ease the execution of the code on HPCC (High-Performance Computing Cluster). Third, we assessed reusability of our reimplementation and the quality of our documentation. Then, we experimented with our own software and tested how easy it would be to start from our implementation to reproduce the results, hence attempting to estimate the robustness of the reproducibility. Finally, in a second part, we propose solutions from this case study and other observations to improve reproducibility and research efficiency at the individual and collective level.Availabilitylast version of StratiPy (Python) with two examples of reproducibility are available at GitHub [2].Contactyang-min.kim@pasteur.fr

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards reproducible computational drug discovery;Journal of Cheminformatics;2020-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3