Abstract
AbstractBackgroundSensory perception can be modulated by the phase of neural oscillations, especially in the theta and alpha ranges. Oscillatory activity in the visual cortex can be entrained by transcranial alternating current stimulation (tACS) as well as periodic visual stimulation (i.e., flicker). Combined tACS and visual flicker stimulation modulates blood-oxygen-level-dependent (BOLD) responses and concurrent 4 Hz auditory click-trains and tACS modulates auditory perception in a phase-dependent way.ObjectiveIn the present study, we investigated if phase synchrony between concurrent tACS and periodic visual stimulation (i.e., flicker) can modulate performance on a visual matching task.MethodsParticipants completed a visual matching task on a flickering visual stimulus while receiving either in-phase (0 degree) or asynchronous (180, 90, or 270 degrees) tACS at alpha or theta frequency. Stimulation was applied over either occipital cortex or dorsolateral prefrontal cortex (DLPFC).ResultsVisual performance was significantly better during theta frequency tACS over the visual cortex when it was in-phase (0 degree) with visual stimulus flicker, compared to anti-phase (180 degree). This effect did not appear with alpha frequency flicker or with DLPFC stimulation. Furthermore, a control sham group showed no effect. There were no significant performance differences amongst the asynchronous (180, 90, and 270 degrees) phase conditions.ConclusionExtending previous studies on visual and auditory perception, our results support a crucial role of oscillatory phase in sensory perception and demonstrate a behaviourally relevant combination of visual flicker and tACS. The spatial and frequency specificity of our results have implications for research on the functional organisation of perception.
Publisher
Cold Spring Harbor Laboratory