Highly Efficient Hypothesis Testing Methods for Regression-type Tests with Correlated Observations and Heterogeneous Variance Structure

Author:

Zhang Yun,Bandyopadhyay Gautam,Topham David J.,Falsey Ann R.,Qiu Xing

Abstract

AbstractBackgroundFor many practical hypothesis testing (H-T) applications, the data are correlated and/or with heterogeneous variance structure. The regressiont-test for weighted linear mixed-effects regression (LMER) is a legitimate choice because it accounts for complex covariance structure; however, high computational costs and occasional convergence issues make it impractical for analyzing high-throughput data. In this paper, we propose computationally efficient parametric and semiparametric tests based on a set of specialized matrix techniques dubbed as the PB-transformation. The PB-transformation has two advantages: 1. The PB-transformed data will have a scalar variance-covariance matrix. 2. The original H-T problem will be reduced to an equivalent one-sample H-T problem. The transformed problem can then be approached by either the one-sample Studentst-test or Wilcoxon signed rank test.ResultsIn simulation studies, the proposed methods outperform commonly used alternative methods under both normal and double exponential distributions. In particular, the PB-transformedt-test produces notably better results than the weighted LMER test, especially in the high correlation case, using only a small fraction of computational cost (3 versus 933 seconds). We apply these two methods to a set of RNA-seq gene expression data collected in a breast cancer study. Pathway analyses show that the PB-transformedt-test reveals more biologically relevant findings in relation to breast cancer than the weighted LMER test․.ConclusionsAs fast and numerically stable replacements for the weighted LMER test, the PB-transformed tests are especially suitable for “messy” high-throughput data that include both independent and matched/repeated samples. By using our method, the practitioners no longer have to choose between using partial data (applying paired tests to only the matched samples) or ignoring the correlation in the data (applying two sample tests to data with some correlated samples).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3