The Impact Of Thigh And Shank Marker Quantity On Lower Extremity Kinematics Using A Constrained Model

Author:

Slater Annelise A,Hullfish Todd J.,Baxter Josh R.ORCID

Abstract

AbstractMusculoskeletal models are commonly used to quantify joint motions and loads during human motion. Constraining joint kinematics simplifies these models but the implications of the number of markers used during data acquisition remains unclear. The purpose of this study was to establish the effects of marker placement and quantity on kinematic fidelity when using a constrained-kinematic model. We hypothesized that a constrained-kinematic model would faithfully reproduce lower extremity kinematics regardless of the number of tracking markers removed from the thigh and shank. Healthy-young adults (N = 10) walked on a treadmill at slow, moderate, and fast speeds while skin-mounted markers were tracked using motion capture. Lower extremity kinematics were calculated for 256 combinations of leg and shank markers to establish the implications of marker placement and quantity on joint kinematics. Sagittal joint and hip coronal kinematics errors were smaller than documented errors caused by soft-tissue artifact, which tends to be approximately 5 degrees, when excluding thigh and shank markers. Joint angle and center kinematic errors negatively correlated with the number of markers included in the analyses (R2 > 0.97) and typically showed the greatest error reductions when two markers were included. Further, we demonstrated that a simplified marker set that included markers on the pelvis, lateral knee condyle, lateral malleolus, and shoes produced kinematics that strongly agreed with the traditional marker set. In conclusion, constrained-kinematic models are resilient to marker placement and quantity, which has implications on study design and post-processing workflows.Ethics Approval and Consent to Participate this study was approved by the Institutional Review Board at the University of Pennsylvania (#824466). Subjects provided written-informed consentConsent to Publish this submission does not contain any individual dataAvailability of Data and Materials the datasets analyzed in this study are available from the corresponding author on reasonable request.Competing Interests one author (JB) is an associate editor for BMC Musculoskeletal Disorders. None of the other authors have any competing interests.Funding no funding has been provided for this researchAuthors’ ContributionsAS, TH, and JB designed the experiment; AS and TH collected the data; AS and JB analyzed and interpreted the data; AS and JB drafted the manuscript; AS, TH, and JB revised the intellectual content of the manuscript; AS, TH, and JB approved the final version of the manuscript; and AS, TH, and JB agreed to be accountable for all aspects of the study.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3