Engineering bacteriocin-mediated resistance against plant pathogenic bacteria in plants

Author:

Rooney William M.,Grinter Rhys,Correia Annapaula,Parkhill Julian,Walker Daniel,Milner Joel J.

Abstract

ABSTRACTPseudomonas syringae(Ps) and related plant pathogenic bacteria are responsible for losses in diverse crops such as tomato, kiwifruit, pepper, olive and soybean. Current solutions, involving the use of chemicals and the introduction of resistance genes, have enjoyed only limited success and may have adverse environmental impacts. Consequently, there is a pressing need to develop alternative technologies to address the problem of bacterial disease in crops. An alternative strategy is to utilise the narrow spectrum protein antibiotics (bacteriocins) used by diverse bacteria for competition against closely related species. Here, we demonstrate that active putidacin L1 (PL1) can be expressed at high levelsin plantaand expression of PL1 provides effective resistance against diverse pathovars ofPs.Furthermore, we found that strains which evolve to become insensitive to PL1; lose their O-antigen, exhibit reduced motility and are less virulent in PL1 transgenic plants. Our results provide proof-of-principle that transgene-mediated expression of a bacteriocinin plantais an effective strategy for providing disease resistance against bacterial pathogens. Genetically modified (GM) crops expressing insecticidal proteins have proved extremely successful as a strategy for pest management; expressing bacteriocins to control bacterial disease may have a similar potential. Crucially, nearly all genera of bacteria, including many plant pathogenic species, produce bacteriocins, providing an extensive source of these antimicrobial agents.SIGNIFICANCEWith the global population to surpass 9 billion by 2050 there is a huge demand to make industrial farming as efficient as possible. A disadvantage of industrial farming is the lack of genetic diversity within crop monocultures, which make them highly susceptible to diseases caused by plant pathogenic bacteria likePseudomonas syringae. Bacteriocins are narrow spectrum protein antibiotics which are produced by all major bacterial lineages. Their main purpose is to eliminate competitor strains to establish dominance within a niche. By arming plants with bacteriocins we can increase the genetic toolbox used to engineer crops to be resistant to specific bacterial plant pathogens.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bacteriocins of Some Groups of Gram-Negative Bacteria;Mikrobiolohichnyi Zhurnal;2020-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3