Author:
Harris Alexandre M.,DeGiorgio Michael
Abstract
AbstractPositive selection causes beneficial alleles to rise to high frequency, resulting in a selective sweep of the diversity surrounding the selected sites. Accordingly, the signature of a selective sweep in an ancestral population may still remain in its descendants. Identifying signatures of selection in the ancestor that are shared among its descendants is important to contextualize the timing of a sweep, but few methods exist for this purpose. We introduce the statistic SS-H12, which can identify genomic regions under shared positive selection across populations and is based on the theory of the expected haplotype homozygosity statistic H12, which detects recent hard and soft sweeps from the presence of high-frequency haplotypes. SS-H12, is distinct from other statistics that detect shared sweeps because it requires a minimum of only two populations, and properly identifies and differentiates between independent convergent sweeps and true ancestral sweeps, with high power and robustness to a variety of demographic models. Furthermore, we can apply SS-H12 in conjunction with the ratio of a different set of expected haplotype homozygosity statistics to further classify identified shared sweeps as hard or soft. Finally, we identified both previously-reported and novel shared sweep candidates from whole-genome sequences of global human populations. Previously-reported candidates include the well-characterized ancestral sweeps atLCTandSLC24A5in Indo-European populations, as well asGPHNworldwide. Novel candidates include an ancestral sweep atRGS18in sub-Saharan African populations involved in regulating the platelet response and implicated in sudden cardiac death, and a convergent sweep atC2CD5between European and East Asian populations that may explain their different insulin responses.Introduction
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献