Abstract
AbstractThe accurate segregation of chromosomes during mitosis relies on the attachment of sister chromatids to microtubules from opposite poles, called biorientation. Sister chromatid cohesion resists microtubule forces, generating tension which provides the signal that biorientation has occurred. How tension silences the surveillance pathways that prevent cell cycle progression and correct erroneous kinetochore-microtubule remains unclear. Here we identify SUMOylation as a mechanism that promotes anaphase onset upon biorientation. SUMO ligases modify the tension-sensing pericentromere-localized chromatin protein, shugoshin, to stabilize bioriented sister kinetochore-microtubule attachments. In the absence of SUMOylation, Aurora B kinase removal from kinetochores is delayed. Shugoshin SUMOylation prevents its binding to protein phosphatase 2A (PP2A) and release of this interaction is important for stabilizing sister kinetochore biorientation. We propose that SUMOylation modulates the kinase-phosphatase balance within pericentromeres to inactivate the error correction machinery, thereby allowing anaphase entry in response to biorientation.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献