Experimental evolution ofCandida albicansunder hypoxia and heat shock reveals nuclear genome variants and mitochondrial methylome alterations

Author:

Bartelli Thais FernandaORCID,Bruno Danielle do Carmo Ferreira,Lichtenstein FlavioORCID,Briones Marcelo R. S.ORCID

Abstract

ABSTRACTInfection byCandida albicansrequires its adaption to physical constraints in the human body, such as low oxygen tension (hypoxia), increased temperature (37°C) and different carbon sources. Previous studies demonstrated that the genetic variability ofC. albicansisolates is an important adaptive mechanism, although little is known about the dynamics of this genetic diversity, and the influence of these environmental conditions on its mitochondrial genome (mtDNA). To test the synergistic effect of these stress conditions onC. albicansgenome, reference strain SC5314 was subjected to anin vitroevolution scheme under hypoxia and 37°C, with two different carbon sources (glycerol and dextrose) for up to 48 weeks (approximately 4,000 generations). Experimental evolution results showed no sequence or copy number changes in the mtDNA, although sequence variants were detected on its nuclear genome by Multilocus sequence typing (MLST) and whole genome sequencing (WGS). After 12 weeks of experimental evolution, sample GTH12, grown under hypoxia at 37°C in glycerol, showed inferior growth and respiratory rates as compared to other conditions tested. Although WGS of GTH12 revealed no variants in its mtDNA, WGS with sodium bisulfite showed a significant reduction in mtDNA methylation in GTH12 in both non-coding and coding regions. Our results provide the first whole mitochondrial genome methylation map ofC. albicansand show that environmental conditions promote the selective growth of specific variants and affect the methylation patterns of the mtDNA in a strain-specific manner.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3