Author:
Sajikumar Sreedharan,Li Qin,Abraham Wickliffe C.,Xiao Zhi Cheng
Abstract
Activity-dependent changes in synaptic strength such as long-term potentiation (LTP) and long-term depression (LTD) are considered to be cellular mechanisms underlying learning and memory. Strengthening of a synapse for a few seconds or minutes is termed short-term potentiation (STP) and is normally unable to take part in the processes of synaptic tagging/capture due to its inability to set the “synaptic tags.” Here, we report that priming of synapses with ryanodine receptor agonists such as ryanodine (10 μM) or caffeine (10 mM) facilitates subsequent synaptic tagging/capture, enabling an STP protocol to establish a late-LTP in response to strong tetanization of a heterosynaptic input. We identified calcium/calmodulin-dependent protein kinase II (CaMKII) as mediating the primed synaptic tag setting, which persisted for 1 h. We also identified protein kinase Mζ (PKMζ), presumably captured from the strongly tetanized heterosynaptic input, as a plasticity-related protein maintaining the LTP at the tagged synapses. In addition, synaptic tags in primed STP were erased or interfered with by delivering low-frequency depotentiating stimulation 5 or 10 min after its induction, thus preventing capture of newly synthesized proteins. These data reveal a novel form of metaplasticity, whereby ryanodine receptor activation lowers the threshold for subsequent synaptic tagging/capture, thus priming weakly activated synapses for heterosynaptic interactions that promote long-term functional plasticity.
Publisher
Cold Spring Harbor Laboratory
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献