Evolution of anisogamy in the early diverging fungus, Allomyces

Author:

Phadke Sujal S.,Rupp Shawn M.,Wilson Sayres Melissa A.

Abstract

AbstractGamete size dimorphism between sexes (anisogamy) is predicted to have evolved from an isogamous system in which sexes have equal-sized, monomorphic gametes. Although adaptive explanations for the evolution of anisogamy abound, we lack comparable insights into molecular changes that bring about the transition from monomorphism to dimorphism. The basal fungal clade Allomyces provides unique opportunities to investigate genomic changes that are associated with this transition in closely related species that show either isogamous or anisogamous mating systems. The anisogamous species show sexual dimorphism in gamete size, number, pigmentation and motility. We sequenced transcriptomes of five Allomyces isolates representing the two mating systems, including both male and female phenotypes in the anisogamous species. Maximum likelihood ancestral character state reconstruction performed in MESQUITE using the de-novo assembled transcriptomes indicated that anisogamy likely evolved once in Allomyces, and is a derived character as predicted in theory. We found that sexual stages of Allomyces express homologs of several genes known to be involved in sex determination in model organisms including Drosophila and humans. Furthermore, expression of CatSper homologs in male- and female-biased samples in our analysis support the hypothesis that gamete interaction in the anisogamous species of Allomyces may involve similar molecular events as the egg-sperm interaction in animals, including humans. Although the strains representing either mating system shared much of the transcriptome, supporting recent common ancestry, the analysis of rate of evolution using individual gene trees indicates high substitution rates and divergence between the strains. In summary, we find that anisogamy likely evolved once in Allomyces, using convergent mechanisms to those in other taxa.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3