Eye position signals in the dorsal pulvinar during fixation and goal-directed saccades

Author:

Schneider Lukas,Dominguez-Vargas Adan-UlisesORCID,Gibson Lydia,Kagan IgorORCID,Wilke Melanie

Abstract

AbstractMost sensorimotor cortical areas contain eye position information thought to ensure perceptual stability across saccades and underlie spatial transformations supporting goal-directed actions. One pathway by which eye position signals could be relayed to and across cortical areas is via the dorsal pulvinar. Several studies demonstrated saccade-related activity in the dorsal pulvinar and we have recently shown that many neurons exhibit post-saccadic spatial preference long after the saccade execution. In addition, dorsal pulvinar lesions lead to gaze-holding deficits expressed as nystagmus or ipsilesional gaze bias, prompting us to investigate the effects of eye position. We tested three starting eye positions (−15°/0°/15°) in monkeys performing a visually-cued memory saccade task. We found two main types of gaze dependence. First, ∼50% of neurons showed an effect of static gaze direction during initial and post-saccadic fixation. Eccentric gaze preference was more common than straight ahead. Some of these neurons were not visually-responsive and might be primarily signaling the position of the eyes in the orbit, or coding foveal targets in a head/body/world-centered reference frame. Second, many neurons showed a combination of eye-centered and gaze-dependent modulation of visual, memory and saccadic responses to a peripheral target. A small subset showed effects consistent with eye position-dependent gain modulation. Analysis of reference frames across task epochs from visual cue to post-saccadic target fixation indicated a transition from predominantly eye-centered encoding to representation of final gaze or foveated locations in non-retinocentric coordinates. These results show that dorsal pulvinar neurons carry information about eye position, which could contribute to steady gaze during postural changes and to reference frame transformations for visually-guided eye and limb movements.New & NoteworthyWork on the pulvinar focused on eye-centered visuospatial representations, but position of the eyes in the orbit is also an important factor that needs to be taken into account during spatial orienting and goal-directed reaching. Here we show that dorsal pulvinar neurons are influenced by eye position. Gaze direction modulated ongoing firing during stable fixation, as well as visual and saccade responses to peripheral targets, suggesting involvement of the dorsal pulvinar in spatial coordinate transformations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3