Dynamics of chromosome replication and its relationship to predatory attack lifestyles in Bdellovibrio bacteriovorus

Author:

Makowski Łukasz,Trojanowski Damian,Till Rob,Lambert Carey,Lowry Rebecca,Sockett R. Elizabeth,Zakrzewska-Czerwińska Jolanta

Abstract

AbstractBdellovibrio bacteriovorus is a small Gram-negative, an obligate predatory bacterium that is largely found in wet, aerobic environments (i.e. soil). This bacterium attacks and invades other Gram-negative bacteria, including animal and plant pathogens. The intriguing life cycle of B. bacteriovorus consists of two phases: a free-living non-replicative attack phase wherein the predatory bacterium searches for its prey, and a reproductive phase, in which B. bacteriovorus degrades a host’s macromolecules and reuses them for its own growth and chromosome replication. Although the cell biology of this predatory bacterium has gained considerable interest in recent years, we know almost nothing about the dynamics of chromosome replication in B. bacteriovorus. Here, we performed a real-time investigation into the subcellular localization of the replisome(s) in single cells of B. bacteriovorus. Our results confirm that in B. bacteriovorus chromosome replication fires only during the reproductive phase, and show for the first time that this predatory bacterium exhibits a novel spatiotemporal arrangement of chromosome replication. The replication process starts at the invasive pole of the predatory bacterium inside the prey cell and proceeds until several copies of the chromosome have been completely synthesized. This chromosome replication is not coincident with the predator-cell division, and it terminates shortly before synchronous predator-filament septation occurs. In addition, we demonstrate that if this lifecycle fails in some cells of B. bacteriovorus, they can instead use two prey cells sequentially to complete their life cycle.ImportanceNew strategies are needed to combat multidrug-resistant bacterial infections. Application of the predatory bacterium, Bdellovibrio bacteriovorus, which kills other bacteria including pathogens, is considered promising for bacterial infections. The B. bacteriovorus life cycle consists of two phases, a free-living, invasive attack phase and an intracellular reproductive phase, in which this predatory bacterium degrades the host’s macromolecules and reuses them for its own growth. To understand the use of B. bacteriovorus as a ‘living antibiotic’, it is first necessary to dissect its life cycle including chromosome replication. Here, we present for the first time a real-time investigation into subcellular localization of chromosome replication in a single cells of B. bacteriovorus. This process initiates at the invasion pole of B. bacteriovorus and proceeds until several copies of the chromosome have been completely synthesized. Interestingly, we demonstrate that some cells of B. bacteriovorus require two prey cells sequentially to complete their life cycle.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3