Predicting functional neuroanatomical maps from fusing brain networks with genetic information

Author:

Ganglberger Florian,Kaczanowska Joanna,Penninger Josef M.,Hess Andreas,Bühler Katja,Haubensak Wulf

Abstract

SummaryA central aim, from basic neuroscience to psychiatry, is to resolve how genes control brain circuitry and behavior. This is experimentally hard, since most brain functions and behaviors are controlled by multiple genes. In low throughput, one gene at a time, experiments, it is therefore difficult to delineate the neural circuitry through which these sets of genes express their behavioral effects. The increasing amount of publicly available brain and genetic data offers a rich source that could be mined to address this problem computationally. However, most computational approaches are not tailored to reflect functional synergies in brain circuitry accumulating within sets of genes. Here, we developed an algorithm that fuses gene expression and connectivity data with functional genetic meta data and exploits such cumulative effects to predict neuroanatomical maps for multigenic functions. These maps recapture known functional anatomical annotations from literature and functional MRI data. When applied to meta data from mouse QTLs and human neuropsychiatric databases, our method predicts functional maps underlying behavioral or psychiatric traits. We show that it is possible to predict functional neuroanatomy from mouse and human genetic meta data and provide a discovery tool for high throughput functional exploration of brain anatomy in silico.

Publisher

Cold Spring Harbor Laboratory

Reference94 articles.

1. French L , Pavlidis P (2011) Relationships between gene expression and brain wiring in the adult rodent brain. PLoS Comput Biol 7(1).

2. Large-Scale Analysis of Gene Expression and Connectivity in the Rodent Brain: Insights through Data Integration;Front Neuroinform,2011

3. A community for disaster science

4. Wiring cost and topological participation of the mouse brain connectome;Proc Natl Acad Sci,2015

5. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3