Abstract
ABSTRACTPlants need to integrate internal and environmental signals to mount adequate stress responses. The NUCLEAR PORE COMPLEX (NPC) component HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) is emerging as such an integrator, affecting responses to cold, heat, light and salinity. Stress conditions often converge in a low-energy signal that activates SUCROSE NON-FERMENTING 1-RELATED KINASE 1 (SnRK1) to promote stress tolerance and survival. Here, we explored the role of HOS1 in the SnRK1-dependent response to low-energy stress inArabidopsis thaliana, using darkness as a treatment and a combination of genetic, biochemical and phenotypic assays. We show that the induction of starvation genes and plant tolerance to prolonged darkness are defective in thehos1mutant. HOS1 interacts physically with the SnRK1α1 catalytic subunit in yeast-two-hybrid andin planta, and the nuclear accumulation of SnRK1α1 is reduced in thehos1mutant. Likewise, another NPC mutant,nup160, exhibits lower activation of starvation genes and decreased tolerance to prolonged darkness. Importantly, defects in low-energy responses in thehos1background are rescued by fusing SnRK1α1 to a potent nuclear localization signal, or by sugar supplementation during the dark treatment. Altogether, this work demonstrates the importance of HOS1 for the nuclear accumulation of SnRK1α1, which is key for plant tolerance to low-energy conditions.
Publisher
Cold Spring Harbor Laboratory