Linear contraction of stress fibers generates cell body rotation

Author:

Okimura ChikaORCID,Akiyama Syu,Nishigami YukinoriORCID,Zaitsu Ryota,Sakurai TatsunariORCID,Iwadate YoshiakiORCID

Abstract

AbstractWounds are healed by crawling migration of the epidermal cells around the injured area. Fish epidermal keratocytes that rapidly repair wounds comprise a frontal crescent-shaped lamellipodium and a rear rugby ball-shaped cell body. The cell body rotates like a wheel during migration. Stress fibers, which are bundles of contractile actomyosin filaments, are arranged along the seams of the rugby ball. Here we show the linear contraction of stress fibers to be the driving force for rotation. We constructed a mechanical model of the cell body that consisted of a soft cylinder with a contractile coil. From the motion of the model, it was predicted that contraction of the stress fibers would deform the soft cell body, as a result of which the deformed cell body would push against the substrate to generate torque. This prediction was confirmed by the observation of stress fiber dynamics in migrating cells. Linear-to-rotation conversion in migrating keratocytes is realized by simple soft-body mechanics. Conversion from linear motion to rotation is widely used in machines with moving parts, but requires somewhat complicated mechanics. An understanding of linear-to-rotation conversion in keratocytes has potential for use in the design of biomimetic soft robots.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3