Highly multiplexed ddPCR-amplicon sequencing reveals strongPlasmodium falciparumpopulation structure and isolated populations amenable to local elimination efforts in Zanzibar

Author:

Holzschuh AurelORCID,Lerch Anita,Gerlovina Inna,Fakih Bakar S.,Al-mafazy Abdul-wahid H.,Reaves Erik J.,Ali Abdullah,Abbas Faiza,Ali Mohamed Haji,Ali Mohamed Ali,Hetzel Manuel W.ORCID,Yukich Joshua,Koepfli CristianORCID

Abstract

ABSTRACTOver the past 15 years, Zanzibar has made great strides towards malaria elimination; yet progress has stalled. Parasite genetic data ofPlasmodium falciparummay inform strategies for malaria elimination by helping to identify contributory factors to parasite persistence. Here we elucidate fine-scale parasite population structure and infer relatedness and connectivity of infections using an identity-by-descent (IBD) approach. We sequenced 518P. falciparumsamples from 5 districts covering both main islands using a novel, highly multiplexed droplet digital PCR (ddPCR)-based amplicon deep sequencing method targeting 35 microhaplotypes and drug-resistance loci. Despite high genetic diversity, we observe strong fine-scale spatial and temporal structure of local parasite populations, including isolated populations on Pemba Island and genetically admixed populations on Unguja Island, providing evidence of ongoing local transmission. We observe a high proportion of highly related parasites in individuals living closer together, including between clinical index cases and the mostly asymptomatic cases surrounding them, consistent with isolation-by-distance. We identify a substantial fraction (2.9%) of related parasite pairs between Zanzibar, and mainland Tanzania and Kenya, consistent with recent importation. We identify haplotypes known to confer resistance to known antimalarials in all districts, including multidrug-resistant parasites, but most parasites remain sensitive to current first-line treatments. Our study provides a high-resolution view of parasite genetic structure across the Zanzibar archipelago and reveals actionable patterns, including isolated parasite populations, which may be prioritized for malaria elimination.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3