Decapping factor Dcp2 controls mRNA abundance and translation to adjust metabolism and filamentation to nutrient availability

Author:

Vijjamarri Anil Kumar,Niu Xiao,Vandermeulen Matthew D.,Onu ChisomORCID,Zhang Fan,Qiu Hongfang,Gupta Neha,Gaikwad SwatiORCID,Greenberg Miriam L.ORCID,Cullen Paul J.,Lin ZhenguoORCID,Hinnebusch Alan G.ORCID

Abstract

ABSTRACTDegradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs indcp2Δ cells that appears to result directly from impaired decapping rather than elevated transcription, which was confirmed by ChIP-Seq analysis of RNA Polymerase II occupancies genome-wide. Interestingly, only a subset of mRNAs requires Dhh1 for targeting by Dcp2, and also generally requires the other decapping activators Pat1, Lsm2, Edc3 or Scd6; whereas most of the remaining transcripts utilize NMD factors for Dcp2-mediated turnover. Neither inefficient translation initiation nor stalled elongation appears to be a major driver of Dhh1-enhanced mRNA degradation. Surprisingly, ribosome profiling revealed thatdcp2Δ confers widespread changes in relative TEs that generally favor well-translated mRNAs. Because ribosome biogenesis is reduced while capped mRNA abundance is increased bydcp2Δ, we propose that an increased ratio of mRNA to ribosomes increases competition among mRNAs for limiting ribosomes to favor efficiently translated mRNAs indcp2Δ cells. Interestingly, genes involved in respiration or utilization of alternative carbon or nitrogen sources are derepressed, and both mitochondrial function and cell filamentation (a strategy for nutrient foraging) are elevated bydcp2Δ, suggesting that mRNA decapping sculpts gene expression post-transcriptionally to fine-tune metabolic pathways and morphological transitions according to nutrient availability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3