Transfer learning in heterogeneous drug-target interaction predictions using federated boosting

Author:

Sándor DánielORCID,Antal PéterORCID

Abstract

AbstractIn multitask federated learning, when small amounts of data are available, it can be harder to achieve proper predictive performance, especially if the clients’ tasks are different. However, task heterogeneity is common in modern Drug-Target interaction (DTI) prediction problems. As the data available for DTI tasks are sparse, it can be challenging for clients to synchronize the tasks used for training. In our method, we used boosting to enhance transfer in the multitask scenario and adapted it to a federated environment, allowing clients to train models without having to agree on the output dimensions. Boosting uses adaptive weighting of the data to train an ensemble of predictors. Weighting data boosting can induce the selection of important tasks when shaping a model’s latent representation. This way boosting contributes to the weighting of tasks on a client level and enhances transfer, while traditional federated algorithms can be used on a global level. We evaluate our results extensively on the tyrosine kinase assays of the KIBA data set to get a clear picture of connections between boosting federated learning and transfer learning.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3