Fully automated detection of dendritic spines in 3D live cell imaging data using deep convolutional neural networks

Author:

Vogel Fabian W.ORCID,Alipek Sercan,Eppler Jens-BastianORCID,Triesch JochenORCID,Bissen DianeORCID,Acker-Palmer Amparo,Rumpel SimonORCID,Kaschube MatthiasORCID

Abstract

AbstractDendritic spines are considered a morphological proxy for excitatory synapses, rendering them a target of many different lines of research. Over recent years, it has become possible to image simultaneously large numbers of dendritic spines in 3D volumes of neural tissue. In contrast, currently no automated method for spine detection exists that comes close to the detection performance reached by human experts. However, exploiting such datasets requires new tools for the fully automated detection and analysis of large numbers of spines. Here, we developed an efficient analysis pipeline to detect large numbers of dendritic spines in volumetric fluorescence imaging data. The core of our pipeline is a deep convolutional neural network, which was pretrained on a general-purpose image library, and then optimized on the spine detection task. This transfer learning approach is data efficient while achieving a high detection precision. To train and validate the model we generated a labelled dataset using five human expert annotators to account for the variability in human spine detection. The pipeline enables fully automated dendritic spine detection and reaches a near human-level detection performance. Our method for spine detection is fast, accurate and robust, and thus well suited for large-scale datasets with thousands of spines. The code is easily applicable to new datasets, achieving high detection performance, even without any retraining or adjustment of model parameters.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3