Nutrient-regulated dynamics of chondroprogenitors in the postnatal murine growth plate

Author:

Oichi Takeshi,Kodama Joe,Wilson Kimberly,Tian Hongying,Imamura Yuka,Usami Yu,Oshima Yasushi,Saito Taku,Tanaka Sakae,Iwamoto MasahiroORCID,Otsuru Satoru,Iwamoto-Enomoto Motomi

Abstract

AbstractLongitudinal bone growth relies on endochondral ossification in the cartilaginous growth plate where chondrocytes accumulate and synthesize the matrix scaffold that is replaced by bone. The chondroprogenitors in the resting zone maintain the continuous turnover of chondrocytes in the growth plate. Malnutrition is a leading cause of growth retardation in children; however, after recovery from nutrient deprivation, bone growth is accelerated beyond the normal rate, a phenomenon termed catch-up growth. Though nutritional status is a known regulator of long bone growth, it is largely unknown if and how chondroprogenitor cells respond to deviations in nutrient availability. Here, using fate-mapping analysis inAxin2CreERT2mice, we showed that dietary restriction increased the number of Axin2+ chondroprogenitors in the resting zone and simultaneously inhibited their differentiation. Once nutrient deficiency was resolved, the accumulated chondroprogenitor cells immediately restarted differentiation and formed chondrocyte columns, contributing to accelerated growth. Furthermore, we showed that nutrient deprivation reduced the level of phosphorylated Akt in the resting zone, and that exogenous IGF-1 canceled this reduction and stimulated differentiation of the pooled chondroprogenitors, decreasing their numbers. Our study ofAxin2CreERT2revealed that nutrient availability regulates the balance between accumulation and differentiation of chondroprogenitors in the growth plate, and further demonstrated that IGF-1 partially mediates this regulation by promoting the committed differentiation of the chondroprogenitor cells.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. Developmental regulation of the growth plate

2. Cell division in endochondral ossification. A study of cell proliferation in rat bones by the method of tritiated thymidine autoradiography;J Bone Joint Surg Br,1960

3. Resting zone of the growth plate houses a unique class of skeletal stem cells

4. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3