Perturb-tracing enables high-content screening of multiscale 3D genome regulators

Author:

Cheng Yubao,Hu MengweiORCID,Yang Bing,Jensen Tyler B,Yang Tianqi,Yu Ruihuan,Ma Zhaoxia,Radda Jonathan S D,Jin Shengyan,Zang ChongzhiORCID,Wang SiyuanORCID

Abstract

AbstractThree-dimensional (3D) genome organization becomes altered during development, aging, and disease1–23, but the factors regulating chromatin topology are incompletely understood and currently no technology can efficiently screen for new regulators of multiscale chromatin organization. Here, we developed an image-based high-content screening platform (Perturb-tracing) that combines pooled CRISPR screen, a new cellular barcode readout method (BARC-FISH), and chromatin tracing. We performed a loss-of-function screen in human cells, and visualized alterations to their genome organization from 13,000 imaging target-perturbation combinations, alongside perturbation-paired barcode readout in the same single cells. Using 1.4 million 3D positions along chromosome traces, we discovered tens of new regulators of chromatin folding at different length scales, ranging from chromatin domains and compartments to chromosome territory. A subset of the regulators exhibited 3D genome effects associated with loop-extrusion and A-B compartmentalization mechanisms, while others were largely unrelated to these known 3D genome mechanisms. We found that the ATP-dependent helicase CHD7, the loss of which causes the congenital neural crest syndrome CHARGE24and a chromatin remodeler previously shown to promote local chromatin openness25–27, counter-intuitively compacts chromatin over long range in different genomic contexts and cell backgrounds including neural crest cells, and globally represses gene expression. The DNA compaction effect of CHD7 is independent of its chromatin remodeling activity and does not require other protein partners. Finally, we identified new regulators of nuclear architectures and found a functional link between chromatin compaction and nuclear shape. Altogether, our method enables scalable, high-content identification of chromatin and nuclear topology regulators that will stimulate new insights into the 3D genome functions, such as global gene and nuclear regulation, in health and disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3