UL135 and UL136 Epistasis Controls Reactivation of Human Cytomegalovirus

Author:

Moy Melissa A.,Collins-McMillen Donna,Crawford Lindsey,Parkins Christopher,Zeltzer Sebastian,Caviness Katie,Caposio Patrizia,Goodrum FeliciaORCID

Abstract

ABSTRACTHuman cytomegalovirus (HCMV) is beta herpesvirus that persists indefinitely in the human host through a protracted, latent infection. The polycistronicUL133-UL138gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction for reactivation. By contrast, UL136 is expressed with later kinetics and encodes multiple protein isoforms with differential roles in latency and reactivation. Like UL135, the largest UL136 isoform, UL136p33, is required for reactivation from latency in hematopoietic cells. Furthermore, UL136p33 is unstable, and its instability is important for the establishment of latency and sufficient accumulation of UL136p33 is a checkpoint for reactivation. We hypothesized that stabilizing UL136p33 might overcome the requirement of UL135 for reactivation. To test this, we generated recombinant viruses lacking UL135 that expressed a stabilized variant of UL136p33. Stabilizing UL136p33 did not impact replication of the UL135-mutant virus in fibroblasts. However, in the context of infection in hematopoietic cells, stabilization of UL136p33 strikingly compensated for the loss ofUL135,resulting in increased replication in CD34+ HPCs and in humanized NOD-scidIL2Rγcnull(NSG) mice. This finding suggests that while UL135 is essential for reactivation, it functions at steps preceding the accumulation of UL136p33 and that stabilized expression of UL136p33 largely overcomes the requirement for UL135 in reactivation. Taken together, our genetic evidence indicates an epistatic relationship between UL136p33 and UL135 whereby UL135 may initiate events early in reactivation that will result in the accumulation of UL136p33 to a threshold required for productive reactivation.SIGNIFICANCEHuman cytomegalovirus (HCMV) is one of nine human herpesviruses and a significant human pathogen. While HCMV establishes a life-long latent infection that is typically asymptomatic in healthy individuals, its reactivation from latency can have devastating consequences in the immune compromised. Defining virus-host and virus-virus interactions important for HCMV latency, reactivation and replication is critical to defining the molecular basis of latent and replicative states and in controlling infection and CMV disease. Here we define a genetic relationship between two viral genes in controlling virus reactivation from latency using primary human hematopoietic progenitor cell and humanized mouse models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3