A statistical approach to identify regulatory DNA variations

Author:

Baumgarten NinaORCID,Rumpf LauraORCID,Kessler ThorstenORCID,Schulz Marcel H.ORCID

Abstract

AbstractNon-coding variations located within regulatory elements may alter gene expression by modifying Transcription Factor (TF) binding sites and thereby lead to functional consequences like various traits or diseases. To understand these molecular mechanisms, different TF models are being used to assess the effect of DNA sequence variations, such as Single Nucleotide Polymorphisms (SNPs). However, few statistical approaches exist to compute statistical significance of results but they often are slow for large sets of SNPs, such as data obtained from a genome-wide association study (GWAS) or allele-specific analysis of chromatin data.ResultsWe investigate the distribution of maximal differential TF binding scores for general computational models that assess TF binding. We find that a modified Laplace distribution can adequately approximate the empirical distributions. A benchmark onin vitroandin vivodata sets showed that our new approach improves on an existing method in terms of performance and speed. In applications on large sets of eQTL and GWAS SNPs we could illustrate the usefulness of the novel statistic to highlight cell type specific regulators and TF target genes.ConclusionsOur approach allows the evaluation of DNA changes that induce differential TF binding in a fast and accurate manner, permitting computations on large mutation data sets. An implementation of the novel approach is freely available athttps://github.com/SchulzLab/SNEEP.Contactmarcel.schulz@em.uni-frankfurt.de

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3