Spatio-temporal transcriptomic analysis reveals distinct nephrotoxicity, DNA damage and regeneration response after cisplatin

Author:

Wijaya Lukas S.ORCID,Kunnen Steven J.,Trairatphisan Panuwat,Fisher Ciaran,Crosby Meredith E.,Schaefer Kai,Bodie Karen,Vaughan Erin E.,Breidenbach Laura,Reich Thomas,Clausznitzer Diana,Bonnet Sylvestre A.,Zheng Sipeng,Pont Chantal,Stevens James L.,Dévédec Sylvia LeORCID,van de Water Bob

Abstract

AbstractNephrotoxicity caused by drug or chemical exposure involves different mechanisms and nephron segments as well as a complex temporal integration of injury and repair responses. Distinct cellular transcriptional programs regulate the time-dependent tissue injury and regeneration responses. Whole kidney transcriptome analysis cannot dissect the complex the nephron segment spatio- temporal injury and regeneration responses. Here, we used laser capture microdissection of formalin- fixed paraffin embedded sections followed by whole genome targeted RNA-sequencing-TempO-Seq and co-expression gene-network (module) analysis to determine the spatial-temporal responses in rat kidney glomeruli (GM), cortical proximal tubules (CPT) and outer-medulla proximal tubules (OMPT) comparison with whole kidney, after a single dose of the nephrotoxicant cisplatin. We demonstrate that cisplatin induced early onset of DNA damage in both CPT and OMPT, but not GM. Sustained DNA damage response was strongest in OMPT coinciding with OMPT specific inflammatory signaling, actin cytoskeletal remodeling and increased glycolytic metabolism coincident with suppression of mitochondrial activity. Later responses reflected regeneration-related cell cycle pathway activation and ribosomal biogenesis in the injured OMPT regions. Activation of modules containing kidney injury biomarkers was strongest in the OMPT, with OMPTCluexpression best correlating with urinary clusterin biomarker measurements compared the correlation of Kim1. Our findings also showed that whole kidney responses were less sensitive than OMPT. In conclusion, our LCM-TempO-Seq method reveals a detailed spatial mechanistic understanding of renal injury/regeneration after nephrotoxicant exposure and identifies the most representative mechanism-based nephron segment specific renal injury biomarkers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3