CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns in epithelia

Author:

Andrés-San Román Jesús A.ORCID,Gordillo-Vázquez CarmenORCID,Franco-Barranco DanielORCID,Morato LauraORCID,Fernández-Espartero Cecilia H.ORCID,Baonza Gabriel,Tagua AntonioORCID,Vicente-Munuera PabloORCID,Palacios Ana M.ORCID,Gavilán María P.,Martín-Belmonte FernandoORCID,Annese ValentinaORCID,Gómez-Gálvez PedroORCID,Arganda-Carreras IgnacioORCID,Escudero Luis M.ORCID

Abstract

SUMMARYDecades of research have not yet fully explained the mechanisms of epithelial self-organization and 3D packing. Single-cell analysis of large 3D epithelial libraries is crucial for understanding the assembly and function of whole tissues. Combining 3D epithelial imaging with advanced deep learning segmentation methods is essential for enabling this high-content analysis. We introduce CartoCell, a deep learning-based pipeline that uses small datasets to generate accurate labels for hundreds of whole 3D epithelial cysts. Our method detects the realistic morphology of epithelial cells and their contacts in the 3D structure of the tissue. CartoCell enables the quantification of geometric and packing features at the cellular level. Our Single-cell Cartography approach then maps the distribution of these features on 2D plots and 3D surface maps, revealing cell morphology patterns in epithelial cysts. Additionally, we show that CartoCell can be adapted to other types of epithelial tissues.MOTIVATIONA major bottleneck in developing neural networks for cell segmentation is the need for labor-intensive manual curation in order to develop a training dataset. The present work addresses this limitation by developing an automated image analysis pipeline that utilizes small datasets to generate accurate labels of cells in complex, 3D epithelial contexts. The overall goal is to provide an automatic and feasible method to achieve high-quality epithelial reconstructions and to enable high-content analysis of morphological features, which can improve our understanding of how these tissues self-organize.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3