A field theoretic approach to non-equilibrium population genetics in the strong selection regime

Author:

Balick Daniel J.ORCID

Abstract

AbstractNatural populations are virtually never observed in equilibrium, yet equilibrium approximations comprise the majority of our understanding of population genetics. Using standard tools from statistical physics, a formalism is presented that re-expresses the stochastic equations describing allelic evolution as a partition functional over all possible allelic trajectories (‘paths’) governed by selection, mutation, and drift. A perturbative field theory is developed for strong additive selection, relevant to disease variation, that facilitates the straightforward computation of closed-form approximations for time-dependent moments of the allele frequency distribution across a wide range of non-equilibrium scenarios; examples are presented for constant population size, exponential growth, bottlenecks, and oscillatory size, all of which align well to simulations and break down just above the drift barrier. Equilibration times are computed and, even for static population size, generically extend beyond the order 1/stimescale associated with exponential frequency decay. Though the mutation load is largely robust to variable population size, perturbative drift-based corrections to the deterministic trajectory are readily computed. Under strong selection, the variance of a new mutation’s frequency (related to homozygosity) is dominated by drift-driven dynamics and a transient increase in variance often occurs prior to equilibrating. The excess kurtosis over skew squared is roughly constant (i.e., independent of selection, provided 2Ns≳ 5) for static population size, and thus potentially sensitive to deviation from equilibrium. These insights highlight the value of such closed-form approximations, naturally generated from Feynman diagrams in a perturbative field theory, which can simply and accurately capture the parameter dependences describing a variety of non-equilibrium population genetic phenomena of interest.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3