The Impact of Pathogenic and Artificial Mutations on Claudin-5 Selectivity from Molecular Dynamics Simulations

Author:

Berselli Alessandro,Alberini Giulio,Benfenati Fabio,Maragliano Luca

Abstract

Tight junctions (TJs) are multi-protein complexes at the interface between adjacent endothelial or epithelial cells. In the blood-brain barrier (BBB), they are responsible for sealing the paracellular spaces and their backbone is formed by Claudin-5 (Cldn5) proteins. Despite the important role in preserving brain homeostasis, little is known on how Cldn5 oligomers assemble. Different structural models have been suggested, where Cldn5 protomers from opposite cells associate to generate paracellular pores that do not allow the passage of ions or small molecules. Recently, the first Cldn5 pathogenic mutation, G60R, was identified and shown to induce anion selectivity in the BBB TJs. This offers an excellent opportunity to further assess the structural models. In this work, we performed umbrella sampling molecular dynamics simulations to study the permeation of single Na+, Cland H2O through two distinct G60R Cldn5 paracellular models. Only one of them, called Pore I, reproduces the functional modification observed in the experiments, displaying a free energy (FE) minimum for Cland a barrier for Na+at the central constriction, consistent with the formation of an anionic channel. To further test the validity of the model, we performed the same calculations for the Q57D and the Q63D mutants, which affect two side-chains in the constriction site. In particular, Q57 is conserved among various Cldns, with few exceptions such as the two cation permeable homologs Cldn15 and Cldn10b. In both cases, we obtain that the FE profiles are modified with respect to the wild-type system, facilitating the passage of cations. Our calculations are the firstin-silicodescription of the effect of a Cldn5 pathogenic mutation, and provide a further assessment of the Pore I model for Cldn5-based TJ architectures, yielding new atom-detailed insight on the selective permeability of the paracellular spaces in BBB.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3