Abstract
AbstractThe apoptotic caspase subfamily evolved into two subfamilies - monomeric initiators and dimeric effectors. Sequence variations in the conserved caspase-hemoglobinase fold resulted in changes in oligomerization, enzyme specificity, and regulation, making caspases an excellent model for examining the mechanisms of molecular evolution in fine-tuning structure, function, and allosteric regulation. We examined the urea-induced equilibrium folding/unfolding of two initiator caspases, monomeric caspase-8 and cFLIPL, over a broad pH range. Both proteins unfold by a three-state equilibrium mechanism that includes a partially folded intermediate. In addition, both proteins undergo a conserved pH-dependent conformational change that is controlled by an evolutionarily conserved mechanism. We show that the conformational free energy landscape of the caspase monomer is conserved in the monomeric and dimeric subfamilies. Molecular dynamics simulations in the presence or absence of urea, coupled with limited trypsin proteolysis and mass spectrometry, show that the small subunit is unstable in the protomer and unfolds prior to the large subunit. In addition, the unfolding of helix 2 in the large subunit results in disruption of a conserved allosteric site. Because the small subunit forms the interface for dimerization, our results highlight an important driving force for the evolution of the dimeric caspase subfamily through stabilizing the small subunit.
Publisher
Cold Spring Harbor Laboratory