Systematic Analysis of Network-driven Adaptive Resistance to CDK4/6 and Estrogen Receptor Inhibition using Meta-Dynamic Network Modelling

Author:

Hart Anthony,Shin Sung-YoungORCID,Nguyen Lan K.ORCID

Abstract

ABSTRACTDrug resistance inevitably emerges during the treatment of cancer by targeted therapy. Adaptive resistance is a major form of drug resistance, wherein the rewiring of protein signalling networks in response to drug perturbation allows the drug-targeted protein’s activity to recover, despite the continuous presence of the drug, enabling the cells to survive/grow. Simultaneously, molecular heterogeneity enables the selection of drug-resistant cancer clones that can survive an initial drug insult, proliferate, and eventually cause disease relapse. Despite their importance, the link between heterogeneity and adaptive resistance, specifically how heterogeneity influences protein signalling dynamics to drive adaptive resistance, remains poorly understood. Here, we have explored the relationship between heterogeneity, protein signalling dynamics and adaptive resistance through the development of a novel modelling technique coined Meta Dynamic Network (MDN) modelling. We use MDN modelling to characterise how heterogeneity influences the drug-response signalling dynamics of the proteins that regulate early cell cycle progression and demonstrate that heterogeneity can robustly facilitate adaptive resistance associated dynamics for key cell cycle regulators. We determined the influence of heterogeneity at the level of both protein interactions and protein expression and show that protein interactions are a much stronger driver of adaptive resistance. Owing to the mechanistic nature of the underpinning ODE framework, we then identified a full spectrum of subnetworks that drive adaptive resistance dynamics in the key early cell cycle regulators. Finally, we show that single-cell dynamic data supports the validity of our MDN modelling technique and a comparison between our predicted resistance mechanisms and known CDK4/6 and Estrogen Receptor inhibitor resistance mechanisms suggests MDN can be deployed to robustly predict network-level resistance mechanisms for novel drugs and additional protein signalling networks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3