Robust and fast multicolor Single Molecule Localization Microscopy using spectral separation and demixing

Author:

Friedl KarolineORCID,Mau AdrienORCID,Caorsi ValentinaORCID,Bourg NicolasORCID,Lévêque-Fort SandrineORCID,Leterrier ChristopheORCID

Abstract

AbstractSingle Molecule Localization Microscopy (SMLM) is a straightforward approach to reach sub-50 nm resolution using techniques such as Stochastic Optical Reconstruction Microscopy (STORM) or DNA-Point Accumulation for Imaging in Nanoscale Topography (PAINT), and to resolve the arrangement of cellular components in their native environment. However, SMLM acquisitions are slow, particularly for multicolor experiments where channels are usually acquired in sequence. In this work, we evaluate two approaches to speed-up multicolor SMLM using a module splitting the fluorescence emission toward two cameras: simultaneous 2-color PAINT (S2C-PAINT) that images spectrally-separated red and far-red imager strands on each camera, and spectral demixing STORM (SD-STORM) that uses spectrally-close far-red fluorophores imaged on both cameras before assigning each localization to a channel by demixing. For each approach, we carefully evaluate the crosstalk between channels using three types of samples: DNA origami nanorulers of different sizes, single-target labeled cells, or cells labeled for multiple targets. We then devise experiments to assess how crosstalk can potentially affect the detection of biologically-relevant subdiffraction patterns. Finally, we show how these approaches can be combined with astigmatism to obtain three-dimensional data, and how SD-STORM can be extended three-color imaging, making spectral separation and demixing attractive options for robust and versatile multicolor SMLM investigations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3