Mycobacterium tuberculosisSecA2-dependent activation of host Rig-I/MAVs signaling is not conserved inMycobacterium marinum

Author:

Serene Lindsay G.ORCID,Champion Patricia A.ORCID,Schorey Jeffrey S.

Abstract

ABSTRACTRetinoic acid inducible gene I (Rig-I) is a cytosolic pattern recognition receptor canonically described for its important role in sensing viral RNAs. Increasingly, bacterially-derived RNA from intracellular bacteria such asMycobacterium tuberculosis, have been shown to activate the same host Rig-I/Mitochondrial antiviral sensing protein (MAVS) signaling pathway to drive a type-I interferon response that contributes to bacterial pathogenesisin vivo. InM. tuberculosis, this response is mediated by the protein secretion system SecA2, but little is known about whether this process is conserved in other pathogenic mycobacteria or the mechanism by which these nucleic acids gain access to the host cytoplasm. Because theM. tuberculosisandM. marinumSecA2 protein secretion systems share a high degree of genetic and functional conservation, we hypothesized that Rig-I/MAVS activation and subsequent induction of IFN-β secretion by host macrophages will also be conserved between these two mycobacterial species. To test this, we generated a ΔsecA2 M. marinumstrain along with complementation strains expressing either theM. marinumorM. tuberculosis secA2genes. Our results suggest that the ΔsecA2strain has a growth defectin vitrobut not in host macrophages. These intracellular growth curves also suggested that the calculation applied to estimate the number of bacteria added to macrophage monolayers in infection assays underestimates bacterial inputs for the ΔsecA2strain. Therefore, to better examine secreted IFN-β levels when bacterial infection levels are equal across strains, we plated bacterial CFUs at 2hpi alongside our ELISA based infections. This enabled us to normalize secreted levels of IFN-β to a standard number of bacteria. Applying this approach to both WT and MAVS-/-bone marrow derived macrophages we observed equal or higher levels of secreted IFN-β from macrophages infected with the ΔsecA2 M. marinumstrain as compared to WT. Together our findings suggest that activation of host Rig-I/MAVS cytosolic sensors and subsequent induction of IFN-β response in a SecA2-dependent manner is not conserved inM. marinumunder the conditions tested.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3