A dominant-negative avirulence effector of the barley powdery mildew fungus provides mechanistic insight to barley MLA immune receptor activation

Author:

Crean Emma EORCID,Bilstein-Schloemer Merle,Maekawa TakakiORCID,Schulze-Lefert PaulORCID,Saur Isabel MLORCID

Abstract

AbstractNucleotide-binding leucine-rich repeat receptors (NLRs) recognize pathogen effectors to mediate plant disease resistance, which is often accompanied by a localized host cell death response. Effectors can escape NLR recognition through various polymorphisms, allowing the pathogen to proliferate on previously resistant host plants. The powdery mildew effector AVRA13-1 is recognized by the barley NLR MLA13 and activates host cell death. We demonstrate here that a virulent form of AVRA13, called AVRA13-V2, escapes MLA13 recognition by substituting a serine for a leucine residue at the C-terminus. Counterintuitively, this substitution in AVRA13-V2 resulted in an enhanced MLA13 association and prevented the detection of AVRA13-1 by MLA13. Therefore, AVRA13-V2 is a dominant-negative form of AVRA13and has likely contributed to the breakdown ofMla13resistance. Despite this dominant-negative activity, AVRA13-V2 failed to suppress host cell death mediated by the MLA13 auto-active “MHD” variant. Neither AVRA13-1 nor AVRA13-V2 interacted with the MLA13 auto-active variant, implying that the binding moiety in MLA13 that mediates association with AVRA13-1 is altered after receptor activation. We also show that mutations in the MLA13 coiled-coil signalling domain, which were thought to impair Ca2+-channel activity and NLR function, instead resulted in MLA13 auto-active cell death. The data constitute an important step to define intermediate receptor conformations during NLR activation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3