A Scalable Framework for Closed-Loop Neuromodulation with Deep Learning

Author:

Gebodh NigelORCID,Miskovic VladimirORCID,Laszlo SarahORCID,Datta AbhishekORCID,Bikson MaromORCID

Abstract

AbstractClosed-loop neuromodulation measures dynamic neural or physiological activity to optimize interventions for clinical and nonclinical behavioral, cognitive, wellness, attentional, or general task performance enhancement. Conventional closed-loop stimulation approaches can contain biased biomarker detection (decoders and error-based triggering) and stimulation-type application. We present and verify a novel deep learning framework for designing and deploying flexible, data-driven, automated closed-loop neuromodulation that is scalable using diverse datasets, agnostic to stimulation technology (supporting multi-modal stimulation: tACS, tDCS, tFUS, TMS), and without the need for personalized ground-truth performance data. Our approach is based on identified periods of responsiveness – detected states that result in a change in performance when stimulation is applied compared to no stimulation. To demonstrate our framework, we acquire, analyze, and apply a data-driven approach to our open sourced GX dataset, which includes concurrent physiological (ECG, EOG) and neuronal (EEG) measures, paired with continuous vigilance/attention-fatigue tracking, and High-Definition transcranial electrical stimulation (HD-tES). Our framework’s decision process for intervention application identified 88.26% of trials as correct applications, showed potential improvement with varying stimulation types, or missed opportunities to stimulate, whereas 11.25% of trials were predicted to stimulate at inopportune times. With emerging datasets and stimulation technologies, our unifying and integrative framework; leveraging deep learning (Convolutional Neural Networks - CNNs); demonstrates the adaptability and feasibility of automated multimodal neuromodulation for both clinical and nonclinical applications.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3