Low frequency optogenetic deep brain stimulation of nucleus accumbens dopamine D1 or D2 receptor-containing neurons attenuates cocaine seeking selectively in male rats in part by reversing synaptic plasticity deficits

Author:

Swinford-Jackson Sarah E.ORCID,Rich Matthew T.ORCID,Huffman Phillip J.,Knouse Melissa C.ORCID,Thomas Arthur S.,Mankame Sharvari,Worobey Samantha J.,Pierce R. ChristopherORCID

Abstract

AbstractBackgroundClinically, deep brain stimulation (DBS) utilizes relatively high frequencies (>100 Hz). In preclinical models, 160 Hz stimulation of the nucleus accumbens in rodents prevents relapse of drug seeking. However, the ability of varied frequencies of accumbens DBS to attenuate drug seeking, and the neuronal subtype specificity of this effect, is unclear.MethodsThe present study examined the effect of DBS in the nucleus accumbens on neuronal plasticity and cocaine-primed reinstatement of cocaine seeking behavior in rats.ResultsElectrical DBS of the accumbens shell attenuated cocaine primed reinstatement across a range of frequencies in male rats, including as low as 12 Hz. The majority of nucleus accumbens neurons are medium spiny neurons (MSNs), which can be differentiated in terms of projections and effects on cocaine-related behaviors by expression of dopamine D1 receptors (D1DRs) or D2DRs. In slice electrophysiology experiments, 12 Hz electrical stimulation evoked long term potentiation (LTP) in eYFP labeled D1DR-MSNs and D2DR-MSNs from cocaine naive male and female rats. However, in rats that self-administered cocaine and underwent extinction training, a paradigm identical to our reinstatement experiments, electrical DBS only elicited LTP in D2DR-MSNs from male rats; this effect was replicated by optical stimulation in rats expressing Cre-dependent ChR2 in D2DR-MSNs. Low-frequency optogenetic-DBS in D1DR-containing or D2DR-containing neurons attenuated cocaine-primed reinstatement of cocaine seeking in male but not female rats.ConclusionsThese results suggest that administering DBS in the nucleus accumbens shell at lower frequencies effectively, but sex-specifically, suppresses cocaine craving, perhaps in part by reversing synaptic plasticity deficits selectively in D2DR-MSNs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3