Causal inference during closed-loop navigation: parsing of self- and object-motion

Author:

Noel Jean-PaulORCID,Bill JohannesORCID,Ding Haoran,Vastola John,DeAngelis Gregory C.,Angelaki Dora E.,Drugowitsch Jan

Abstract

AbstractA key computation in building adaptive internal models of the external world is to ascribe sensory signals to their likely cause(s), a process of Bayesian Causal Inference (CI). CI is well studied within the framework of two-alternative forced-choice tasks, but less well understood within the cadre of naturalistic action-perception loops. Here, we examine the process of disambiguating retinal motion caused by self- and/or object-motion during closed-loop navigation. First, we derive a normative account specifying how observers ought to intercept hidden and moving targets given their belief over (i) whether retinal motion was caused by the target moving, and (ii) if so, with what velocity. Next, in line with the modeling results, we show that humans report targets as stationary and steer toward their initial rather than final position more often when they are themselves moving, suggesting a misattribution of object-motion to the self. Further, we predict that observers should misattribute retinal motion more often: (i) during passive rather than active self-motion (given the lack of an efference copy informing self-motion estimates in the former), and (ii) when targets are presented eccentrically rather than centrally (given that lateral self-motion flow vectors are larger at eccentric locations during forward self-motion). Results confirm both of these predictions. Lastly, analysis of eye-movements show that, while initial saccades toward targets are largely accurate regardless of the self-motion condition, subsequent gaze pursuit was modulated by target velocity during object-only motion, but not during concurrent object- and self-motion. These results demonstrate CI within action-perception loops, and suggest a protracted temporal unfolding of the computations characterizing CI.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impaired stationarity perception is associated with increased virtual reality sickness;Journal of Vision;2023-12-21

2. Causal inference during closed-loop navigation: parsing of self- and object-motion;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-08-07

3. A theory of autism bridging across levels of description;Trends in Cognitive Sciences;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3